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Foam patterning in porous media
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~Received 16 August 1996; revised manuscript received 21 February 1997!

We consider a model of patterning of one-dimensional foam–bubble chain confined in a bamboolike cap-
illary. The discrete model of such a foam describes a distribution of foam films—lamellae that, like ‘‘bridges,’’
span a capillary. This model is a kind of Ulam map, which admits many metastable distributions of lamellae
in a bamboolike capillary as governing parameters~external pressure drop, lattice parameter, lamella tension,
and gas compressibility! overcome certain barriers. In particular, some random distributions of bubble sizes
over the chain are suited to solutions of the proposed discrete deterministic model. Randomization of lamella
positions speaks in favor of the possibility of the glasslike patterning of foam in a bamboolike capillary. For
such ‘‘chaotic’’ foam structures, the admissible pressure drop that the bubble chain can sustain, i.e., the
so-called start-up, yield pressure drop, rises. We show that the start-up pressure drop depends upon the length
of the chain nonlinearly. Only for short chains does it linearly depend upon the number of bubbles in the chain.
For infinitely long chains, a saturation effect is observed; i.e., the critical pressure drop becomes independent
of the chain length.@S1063-651X~97!13011-2#

PACS number~s!: 82.70.Rr, 68.10.2m, 68.90.1g, 05.45.1b
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I. INTRODUCTION

Recent studies@1–12# have shown that foam, because
its unique structure, reduces gas flow in porous media. T
blocking effect makes foam a promising blocking fluid f
underground gas storage and for other engineering app
tions @9–11#. To understand the nature of blockage of g
flow by foam, numerous investigators have conducted fo
displacement tests in packs of glass beads and etched
plates @2–4,7–9,12#. It has been shown that, at any give
instant of time, foam flows in a small fraction of the pore
The rest of the pores contain ‘‘trapped foam,’’ which effe
tively blocks the flow. As a result, the permeability to gas
reduced by several orders of magnitude over that wh
would be assumed with a gas-liquid system without a foa
ing agent.

In addition to reduction of permeability, foam radical
changes the rheological behavior of the gas phase@1–15#. In
particular, in the presence of a foam, gas flows as if it wer
homogeneous fluid with a start-up yield pressure drop. S
a start-up pressure drop must be applied before foam
move through porous media.

This paper concerns the physical nature of the star
yield pressure drop. The explanation of the yield press
drop is usually based upon one fundamental assump
namely, that foam is incompressible@1,5,10–13#. Let us
show that such an assumption leads to a huge capillary
rier.

In explanation of the peculiarities of foam patternin
within a porous medium, it is sufficient to consider a on
dimensional foam, i.e., a bubble chain, immersed in a ba
boolike capillary. For clarity, we assume that, before def
mation, foam films, lamellae, reside in thermodynamica
preferential parts of the channel, namely, in each thr
where the surface energy of lamellae has a minimum.
such a chain, the distance between adjacent lamellae i
the order of the radius of a pore;r . In this model, the
561063-651X/97/56~6!/6929~16!/$10.00
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problem of prediction of the start-up yield pressure drop
duces to a description of how an external pressure is re
tributed over the chain.

If we neglect for a time the compressibility of the ga
then to change the pressure by an amount ofDp in a sample
with a macroscaleL, we need to overcome the Laplacia
capillary barrierDp;(s/r )3(number of lamellae), where
s is the tension of individual lamella. Because we have
sumed that lamellae reside at each throat, the numbe
lamellae is proportional toL/r . Then the capillary barrier is
estimated asDp;sL/r 2. It should be noted that, for an
absolutely compressible gas, a similar estimate remain
the force. Indeed, for both cases, the total capillary barrie
a sum of the individual Laplacian barriers.

Using this estimate, we conclude that the start-up press
drop must be giant. The experimental values are significa
lower than this estimate. There are some other additio
reasons, based on experimental data, which speak in fav
finite foam compressibility@5,9–11,15#. So this fact should
be taken into account.

In this paper, we shall show that the finite compressibil
of gas plays an important role in foam patterning and
shall develop a respective theory of foam elasticity that le
to a significantly lower barrier. However, prior to a mat
ematical analysis, it is useful to point out a range of inp
physical parameters for which the assumption of foam ‘‘
compressibility’’ ~or ‘‘absolute compressibility’’! may be
freely used@14#. Let us consider two characteristic values
pressure perturbations associated with foam in porous m
on the microlevel of pores. The first characteristic press
drop is the Laplacian capillary barrierdPc;4s/r . It is im-
posed by the inherent structure of the pore matrix. This is
pressure drop required to push a single lamella throug
pore constriction. To estimate the second pressure varia
caused by the change of bubble volume, we consider
following imaginary experiment. We displace a sing
lamella. But other lamellae in the train will remain at the
6929 © 1997 The American Physical Society
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6930 56DAUTOV, KORNEV, AND MOURZENKO
initial positions at the throats. Then, by treating the gas
ideal, the pressure perturbation within the deformed bub
can be estimated asdPg;PgdV/V;Pg /K, whereV is the
initial cell volume,Pg is the initial gas pressure, andK is an
integer number of pores between adjacent lamellae. T
pressure variation does not depend on external pressure
and it is an inherent characteristic of the foam. It might
expected that wheneverdPg.dPc (4sK/Pgr ,1), foam
will move as a whole, because in such a case the exte
pressure drop will be redistributed over the entire system
foam cells. In the opposite case, lamellae are capable
withstanding the variations of pressure of an order ofdPg .
This means that the fate of each individual lamella tha
able to sustain the local pressure variation of an order ofdPg
comes to the forefront and drives the foam patterning. Th
the above-mentioned inequality assigns a specific mea
for terms of ‘‘compressible’’ or ‘‘incompressible’’ foams
and also selects some range of the input parameters w
which a theory of foam elasticity can be constructed. T
theory of foam elasticity underlies the approach to fo
‘‘plasticity,’’ i.e., the description of a creep of foam lamella
It should be remembered that, within the framework of t
ordinary theory of plasticity, the start-up critical pressu
drop can be estimated as a criterion for depinning a dislo
tion @16#. In this paper, we shall show how such a criteri
can be obtained for foams. The mathematical problem
similar to the problem of determining the critical field fo
vortex formation in Josephson junctions and the like@16–
22#.

There is another approach to determining the critical pr
sure drop. It has been proposed by numerous authors@7,10–
15#. They treated the critical pressure drop as that require
keep the lamellae moving and, therefore, to overcome
capillary and viscous forces that resist their advance. A
tailed investigation into these approaches has been don
Rossen@13,15#. Using this approach, the crucial role in th
appearance of the critical pressure gradient has been a
uted to the sharp edges, or cusps, within a pore chan
which is modeled as a tube with a periodically varying
dius. For a piecewise linear distribution of the pore radi
the channel is formed as a system of frustums of cones
gas in the cells were incompressible, then some of
lamella positions would be prohibited due to solely geom
ric restrictions. In this case, the motion of lamellae is co
sidered as a sequence of alternating equilibrium position
a lamella. For certain shapes of the channel, the bubble
to jump a certain distance in order to conserve volume d
ing the motion. Jumps in lamella position occur when t
bubble volume becomes a nonmonotonic function of
lamella position. A channel with edges, or cusps, is suc
case. Usually@7,10–15#, in order to estimate the critica
pressure gradient, the volume-average value of Lapla
pressure drop per bubble is analyzed~provided that the
bubble volumes are random and uncorrelated!. The volume-
average Laplacian pressure drop per lamella represent
net work required to push lamella through the pore. T
driving pressure gradient was attributed to the time-avera
value of the pressure drop per bubble.~For steady motion,
the relation between time and volume occupied by
bubble is linear.! In such a formulation, the critical pressu
gradient in smooth inhomogeneous capillaries, e.g., s
s
le

is
op,
e

al
f

of

s

s,
ng

in
e

e

a-

is

s-

to
e

e-
by

ib-
el,
-
,
If
e

t-
-
of
as
r-
e
e
a

n

the
e
d

e

u-

soidal, has to be zero@13#. At the same time, in most exper
ments on homogeneous bead packs@7,9,12#, in which, at a
glance, active channels should be smooth, the critical p
sure drop was also observed.

In this paper, we develop a nonlinear theory of foam el
ticity that casts doubt on the applicability of the mechani
we have just discussed@7,10–15,23#. As it follows from our
mathematical analysis, the final results are insensitive to
shape of a pore channel. A more important factor is the ra
dPg /dPc , which serves as a measure of the binding ene
of lamellae with respect to pinning energy. In Sec. II, w
formulate the model of foam patterning under a load. Fo
is considered as a one-dimensional~1D! chain of lamellae
immersed into a bamboolike capillary. It is assumed th
initially, the chain forms a 1D crystal so that the lamell
reside at the channel throats. The model resembles the U
model @24,25#. For a small pressure perturbation, it is r
duced to the Frenkel-Kontorova model@16,18#. In the two
following sections, we discuss two limiting cases of foa
two bubbles, Sec. III, and a continuous chain of bubbl
Sec. IV. In Sec. IV, we demonstrate that the competit
between elastic forces caused by the gas compressibility
capillary forces leads to foam coarsening; more precisely
leads to the possibility of the appearance of superstructu
The discreteness effects result in more complex foam
terning, as follows from Sec. V. In particular, the glassli
ordering is also notable. But the selection of the ch
ground state from the thermodynamic principles is difficu
because the resulting equilibrium state of the chain is d
tated, in reality, by the history of foam generation and m
tion through a porous medium. Anyway, numerical analy
shows that the bubble chain in a glasslike state withsta
the enhanced pressure drop as compared to that prescrib
crystallinelike ordering. In Sec. VI, we discuss the effect
bubble train length and show that the usual estimate of c
cal pressure drop¹p;nbs/r @11,23#, wherenb is the linear
density of bubbles, is suitable solely for short caravans.
long caravans, the critical pressure drop does not depen
the number of lamellae in the caravan. This effect was fi
predicted in @26#, on the basis of the Frenkel-Kontorov
model. It is worth noting that in application to supercondu
ors as described by the mathematically similar model,
importance of the size effect has been pointed out by Low
@22#. All the conclusions are summarized in Sec. VII.

II. STATEMENT OF THE PROBLEM IN TERMS
OF AN AREA PRESERVING MAP

A. Assumptions

We shall discuss the nature of foam patterning under
following assumptions.

~1! We shall model the porous medium as a rigid capilla
with a radius

r 5r 01d cosS 2px

l D . ~1!

Herer 0 , l, andd are some characteristic scales of the poro
medium, and thex axis coincides with the axis of the sym
metry of a capillary.

~2! The pore aspect ratio is a lowd!r 0!l.
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56 6931FOAM PATTERNING IN POROUS MEDIA
~3! In an initial undeformed state, foam is perfectly o
dered. Under a load, all the bubbles keep the same mass
we prohibit the occurrence of diffusion.

~4! The gas in the bubbles is ideal.
~5! One can ignore the Plateau borders and assume

the lamellae intersect the pore walls at 90° angles@8,27#.
Assumptions~1! and ~2! can be particularly justified by

the following arguments. As has been shown experiment
on a homogeneous porous medium@7,28#, where the ar-
rangement of the neighboring pore throats is rather regu
the foam transport is realized through some effective slid
channels. These active channels are controlled by the me
nisms for the creation and disappearance of foam lame
Frequently, these channels have a slightly varying cro
sectional area@29#. Assumption~2!, however, can be altere
without any change in most of the physical conclusions. A
sumption~3! is stronger, but it allows us to demonstrate t
physics of foam patterning in porous media. We particula
relax this assumption in Sec. V. Assumptions~4! and~5! also
simplify the model, but they do not play a significant role.
change in the equation of the gas state will merely alter
effective elasticity constants of a foam. But the characte
foam behavior will be similar. Assumption~5! has been veri-
fied experimentally@8,27#.

We turn now to the construction of a model of a bubb
chain~Fig. 1!. We assume that the train consists ofN lamel-
lae whose centers of chords are prescribed as poinx
5a1 ,a2 ,...,aN . Each lamella undergoes the action of tw

FIG. 1. ~a! Scheme of lamella distribution in a wavy channe
Dashed lines are attributed to the initial positions of lamellae,
boldfaced lines represent the lamellae under a load.~b! Specifica-
tion of the input parameters needed for calculation of the bub
volume variation and capillary force.
.e.,

at
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kinds of forces: elastic forces and capillary forces. The c
illary forces tend to fix the lamellae at the pore throats, wh
elastic forces, caused by gas compressibility, compel
lamellae to shift into new equilibrium positions. Competitio
between these forces leads to equilibrium states of the bu
chain.

B. Elastic forces

We first focus on the elastic response of the bubble ch
caused by the gas compressibility. Under a load, thei th
bubble is deformed. And its length, with an accuracy
O(d/r 0), becomesai2ai 21 ~see Appendix!. The resulting
elastic force acting upon thei th lamella can be written with
the same accuracy as

f e5pr 0
2~Pi 112Pi !. ~2!

HerePi is the gas pressure within thei th bubble. Making use
of the equation of state of the ideal gas, and accounting
assumption~2!, we have

Pi 11~ai 112ai !5Pi~ai2ai 21!5•••5PgKl. ~3!

Here we denote asPg the initial gas pressure in an individua
bubble, andKl is the ‘‘wagon length,’’ i.e., the distance
between adjacent lamellae in an initial unperturbed stateK
is an integer number. It is more convenient to rewrite Eq.~3!
by introducing a new unknown function,r i—displacement
of the i th lamella from its initial position at the throat. The
ai5l/21lKi 1r i and Eq.~3! takes the form@30#

Pi5
PgKl

r i2r i 211lK
. ~4!

Thus, Eqs.~2! and ~4! express the elastic force in terms
the displacements of lamellae.

C. Capillary forces

To specify the capillary force, consider the membra
analogy. The shapes of curved lamella and the pressure
ferences across the lamella are dictated by the Laplace
mula

DP5Pi 112Pi5
4s

Ri
, ~5!

wheres is the surface tension, 2/Ri is the sum of the princi-
pal curvatures of thei th lamella, andRi is the radius of the
spherical membrane. The factor of two accounts for b
film interfaces. Rule~5! reflects the thermodynamic driv
needed to minimize the surface area of the film. Unde
load, some lamellae take positions at which they bulge ba
ward and actually pull the chain forward. Others bulge fo
ward and resist forward displacement. Taking into acco
assumption~5!, we find @see Fig. 1~b!#

Ri5r /sina~r !ux5ai
, tana5

dr

dx
. ~6!

Thus, the right-hand side of Eq.~6! is expressed via coordi
nates of the lamellae in caravan,ai5l/21 iKl1r i , or

d
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6932 56DAUTOV, KORNEV, AND MOURZENKO
through their displacements,r i . Assumption~2! allows us to
write Eq. ~6! in the simpler form~Appendix!

Ri5
lr 0

2pd sin~2pr i /l!
. ~7!

Then the capillary force can be written with an accuracy
O(d/r 0) as

f c5pr 0
2 4s

Ri
, ~8!

whereRi is expressed by Eq.~7!.
The balance of forces, Eqs.~2! and ~8!, gives us the de-

sired equation

Pi 112Pi52
8pds

lr 0
sinS 2pr i

l D . ~9!

To specify completely the state of this chain, the syst
of Eqs. ~4! and ~9! should be subjected to boundary cond
tions for the zeroth and the lastN21 lamellae as

P05PgPext, PN5PgP, ~10!

where Pext and P are the external dimensionless pressu
applied to the chain.

C. Thermodynamic potential

Thus, all the states of the chain undergoing a load
described by Eqs.~4!, ~9!, and~10!. At the same time, as wil
be shown below, the above formulated problem allows f
solutions at some range of the input physical parameters.
required essential property of the model is that its energ
a ground state has to be at a minimum. The extremity of
energy could yield a metastable lamella distribution tha
also interesting for applications. The energy of the chain
N bubbles consists of two parts: namely, the elastic ene
Ee and the surface energyEc of lamellae

F5Ee1Ec . ~11!

The surface energyDEci accumulated by thei th lamella
is equal to the work of capillary forces 4psr 0

2/Ri during the
lamella displacement

DEci5E 4spr 0
2

Ri
dr i54spr 0d cos

2pr i

l
.

The elastic energyDEei of the i th bubble, associated with
bubble stretching, is defined as

DEci52E Pi~Vi !dVi5pr 0
2PgKl ln

Pi

Pg
.

Here we have used Eq.~4! in order to calculate the integra
The work of the bubble chain against external pressure

equal to

pr 0
2Pg~PrN212Pextr0!.
f

s

re

he
in
e
s
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y
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Then the total thermodynamic potential of the system
lamella is expressed as

F5
pr 0

2PgKl

N (
i 51

N21

ln
Pi

Pg
2

4pr 0sd

N (
i 50

N21

cos
2pr i

l

1
pr 0

2Pg

N
~PrN212Pextr0!. ~12!

D. Reverse problem

It is convenient to rewrite all the equations in their dime
sionless form. We use the following normalization:

2p
r i

l
→r i ,

Pi

Pg
→pi ,

2F

Pglr 0
2→F.

Then Eqs.~4!, ~9!, ~10! take a form of the map

pi 112pi522pm sinr i , ~13!

r i 112r i5
2pK

pi 11
22pK, ~14!

p05Pext, pN5P, ~15!

in which the parameter

m5
4sd

Pgr 0l

serves as a measure of the intensity of capillary forces w
respect to the elastic forces. We also rewrite the energy
expressingrN21 in Eq. ~12! throughpi andP and by solving
Eq. ~14! recursively. Then the thermodynamic potential tak
the following dimensionless form:

F5
2pK

N H (
i 51

N21 S lnpi1
P

pi
D2

m

K (
i 50

N21

cosr iJ
1

~P2Pext!r0

N
. ~16!

The mathematical model~13!–~16! is suitable for analysis in
a wide spectrum of physical problems related to 1D fo
patterning and, in particular, to predictions of foam textu
We, however, recall that the goal of our study consists in
prediction of the critical pressure drop required to shift t
bubble train as a whole. In the formulation of the map~13!–
~15! and in minimization of Eq.~16!, the critical pressure
drop has not been specified. Therefore, we are going to
termine some additional criteria that select the desired s
tion to map~13!–~16!.

We turn now to the physical picture of the displaceme
of the bubble train. It should be remembered that whene
the last lamella is free, i.e.,P51, there is a single pinning
force—a capillary force—which tends to keep the lastN
21)st lamella at an equilibrium position. Moreover, th
force resists forward displacement only within the peri
rN21P@0,l/2#, where the lamella bulges forward. Withi
this period, the profile of this force has a single extrem
point—the maximum@see Eqs.~7! and ~8!#. Therefore, it



e
in
b

hi
re

wl

s
e
th
o

te
ob
io
it
om

-

n

ut
u

su

he

a

rge
first
at a

ing,
ld

is
x-

n-
vial
-
all
ec-

f the

the
d its
all
gas
ear-
o,
s,
gu-

hen
on
sed
figu-

f
ba-
ect.

m

56 6933FOAM PATTERNING IN POROUS MEDIA
might be expected that the bubble train begins motion imm
diately after the last lamella has reached the extreme po
The pressure drop required to overcome this barrier will
called the critical pressure drop,G5Pext21. Precisely
speaking, if the dependenceG(rN21) is nonmonotonic, the
maximum of possibleG(rN21) within the period 0,rN21
,l/2 should be called the critical pressure drop. For t
reason, the solution of the boundary value problem is
placed by the solution of the Cauchy problem: the kno
edge ofP51 andrN21 determines recursivelypi andr i for
all i . Then Eqs.~13! and ~14! define such a mapT that a
point Ui 115(pi 11 ,r i 11) is transformed into pointUi
5T(Ui 11)5(pi ,r i). One can check by direct calculation
that the Jacobian matrix ofT has a unit determinant. Henc
the map is area preserving. This map, usually called
Ulam map, has been previously discussed in a different c
text and statement@24,25#. Within the framework of the
problem of foam patterning, we seek the relation ofPext
5Pext(rN21), where the parameterrN21 is used to distin-
guish different solutions to Eqs.~13! and ~14!. Then we de-
termine the maximum pressure drop among those calcula
The goal of this study consists in solving the reverse pr
lem, i.e., the prediction of critical pressure drop as a funct
of the input parameters. It is difficult to find the explic
solution to the general case. We therefore consider s
asymptotes. The linear version of the model in Eqs.~13!–
~15!, i.e., asymptotesr i→0, Pext→1, allows us to select dis
tinguishing limiting cases of foam patterning.

E. Correlation length

Consider the semi-infinite chainN→`. Then the solution
to the corresponding linearized problem

pi 112pi522pmr i ,

r i 112r i522pKpi 11 ,

p05Pext21, pN50

can be written in the form@31#

r i5ae2v i ,

wherea is a constant defined by the boundary conditions a
v satisfies the following transcendental equation

coshv5114p2Km. ~17!

ParameterNcor;1/v can be called the correlation length. B
it is better to call this parameter the screening length beca
it defines the characteristic distance over which the pres
in the bubbles decreases fromPext to 1.

In regimes where colligative properties of foam play t
crucial role, the parameterKm is less than one~see Introduc-
tion!, and the screening length of a caravan is estimated

Ncor;
1

2pAKm
, Km!1. ~18!

In the opposite case,
-
t.

e

s
-

-

e
n-

d.
-

n

e

d

se
re

s

Ncor;
1

ln~214p2Km!
, Km@

1

4p2 . ~19!

Thus, in the former case, the load is distributed over a la
number of lamellae. In the last case, the small number of
lamellae bear the main load. Therefore, one expects th
continuous approximation of model~13!–~16! appropriately
describes the characteristic feature of the foam pattern
wheneverKm!1, and contrarily, the discrete effects shou
be taken into account for cases whereKm>1/4p2.

III. TWO BUBBLES

Even for two bubbles, the above formulated problem
nontrivial. So we start from the analysis of this simple e
ample: a short chain consisting of two bubbles.

We begin with a description of possible equilibrium u
loaded states of such a chain. One can easily find two tri
solutions of Eqs.~13! and~14! that satisfy the boundary con
dition Pext5P51. The first represents the state in which
the lamellae reside in the throats of the channel. In the s
ond case, the lamellae are attached at the widest part o
pore ~configurations I and II in Fig. 2, respectively!. Con-
figuration I is stable with respect to small perturbations in
lamella positions, because the lamella bulges forward, an
further displacement is hindered. In configuration II, sm
perturbations in the lamella positions, caused by the
pressure perturbations within bubbles, result in the app
ance of a capillary force codirected with pushing force. Als
in configuration II, the surface energy of lamellae rise
while the elastic energy remains the same as that in confi
ration I. Consequently, this configuration is unstable.

If we contract both bubbles and then make them free, t
it is possible, in principle, that capillary forces acting up
the external lamellae will be large enough to keep increa
pressure in the bubbles. The corresponding steady con
ration III, which satisfies Eqs.~13! and ~14! and boundary
conditionsPext5P51, is shown in Fig. 2. Now the state o
the middle lamella is quite stable, because small pertur
tions of pressure within the bubbles cause a restoring eff
Making use of Eqs.~13! and ~14!, we obtain the pair (r,p)
by solving the following equations:

p5112pm sinr, ~20!

FIG. 2. Configurations I and III are the two possible equilibriu
states of two bubbles. Configuration II is unstable.
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6934 56DAUTOV, KORNEV, AND MOURZENKO
p5
2pK

r2p12pK
, ~21!

wherep denotes the pressure within the bubbles, andr is the
displacement of the end lamellaer52p2r15r3 . The solv-
ability condition of Eqs.~20! and ~21! ~see Fig. 3! demands
that

dp

drU
r5p

Eq. ~20!

,
dp

drU
r5p

Eq. ~21!

.

Here the upper index means that the derivatives have to
calculated by making use of the respective formula. Us
simple algebra, we find the solvability condition in the for

Km.
1

4p2 . ~22!

In other words, configuration III cannot be realized if th
capillary forces are small or the bubble length is small.

Proceeding to the analysis of the possible range
Pext(r3), we find that two distinguishing regimes of cha
behavior take place@Fig. 4~a!#. They are distinguished by th
parameter Km. The first regime corresponds toKm
,1/4p2, when all the lamellae reside in the vicinity of th
throats. As parameterK rises, novel configurations such a
configuration III appear. In other words, lamellae are capa
of occupying the ‘‘dangerous’’ positions at the widest part
the pore, wheneverKm.1/4p2.

Figure 4~a! shows the pressurePext as a function of the
displacementr3 for bubble trains with N53 and mK
;0.008,1/4p2. For eachPext there are two equilibrium
states of the train. Two points,~Pext51, r350! and ~Pext
51, r35p!, represent configurations I and II, respective
The characteristic plot of energyF versusPext is depicted in
Fig. 4~b!. This plot can be subdivided into three pieces: tw
branches before the intersection point and the loop in
vicinity of the maximum ofPext. The lower branch of curve
F(Pext) before the loop corresponds to an increasing bra
of Pext(r3). These states can be obtained from the ini

FIG. 3. Scheme for graphic solving Eqs.~20! ~curve 1! and~21!
~curve 2!. The solution first appears as the curves touch one
other.
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undeformed states by slowly and continually increasing t
external pressure. We shall call such a process the ‘‘ad
batic’’ variation of Pext. In the vicinity of the maximum of
the admissible external pressure, the energy behaves
monotonically. The corresponding states with a minimu
energy cannot be reached adiabatically. In order to obt
such states, we have to consider some dynamic proces
loading. The upper branch ofF(Pext) after the loop corre-
sponds to the descending branch ofPext(r3). These states
are mechanically stable and can be considered as a rea
tion of some dynamic process.

Comparison of curves 1 and 2 in Fig. 4~a! shows that, for
K52, the admissible maximum pressurePext decreases rela-
tive to the case in whichK51. For largerm, the bubble train
withstands the larger pressurePext @Fig. 4~a!#. This means
that the maximum pressure increases with the effective p
ning force, which is ruled by both the capillary force an
effective bubble compressibility.

Further increasing the length of the bubble,K, we arrive

n-

FIG. 4. ~a! Admissible external pressure and~b! respective en-
ergy per bubble for two bubbles,m50.008; the dashed line corre
sponds to parametersm50.016,K51.
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56 6935FOAM PATTERNING IN POROUS MEDIA
at the rangemK.1/4p2. Figure 4~a! demonstrates the be
havior of the functionPext(r3) for the case in whichK
510,m50.008. This is typical behavior. For the large latti
parameter,K510, there are four solutions for eachPext.1
in the ranger3,1. The number of peaks depends upon
relation between the effective compressibility of a bub
and the magnitude of capillary force through parameterKm.
On the other hand, forr3;1, curvePext(r) intersects line
P51. This fact indicates the presence of configuration II

Thus, the simple model demonstrates the highly nonlin
character of foam patterning even for two bubbles. It mig
be expected that colligative properties will come to the fo
front with the growth of bubble population.

IV. CONTINUOUS MODEL

In this section, we shall discuss the characteristic featu
of another limiting case—a continuum chain. Going ov
from a discrete variable to a continuous variab
s52pKi , we rewrite Eqs.~13! and ~14! as

2
dp

ds
5

m

K
sinr, ~23!

dr

ds
5

1

p
21, ~24!

One expects that the continuous model, Eqs.~23! and
~24!, approximates the discrete one, wheneverpi and r i
slowly vary with i . Quantitative estimates of the limits of th
validity of the continuous model have been done in Sec. I

The system~23! and ~24! has the first integral

lnp2p5E1
m

K
cosr, ~25!

whereE is a constant that depends on boundary conditio
The analysis of the system of equations@~23! and ~24!# al-
lows us to clarify the main peculiarities of the inherent stru
ture of the bubble chain in relation to the magnitude of p
rameterE. By virtue of the translational symmetryr→r
12pn, n50,6` ~overbar denotes an inclusive range!, the
system of equations@~23! and ~24!# may be considered
within the whole range ofrP(2`,`). It follows from the
phase portrait~Fig. 5! that the system has two kinds of sin
gular points: hyperbolic and elliptic singular points. Poin
p51, r52pn, n50,6` serve as hyperbolic singula
points. These singular points represent the solutions des
ing configuration I in Fig. 2. Lamellae are attached to t
thinnest parts of the channel so that the surface energ
lamellae has a minimum. Pointsp51, r5p(2n11), n
50,6` are elliptic. They describe configuration II in Fig. 2
Lamellae tend to leave these wide parts of the channel
cause the surface energy takes the highest possible v
here. The hyperbolic points are connected by a separa
which has two branches within each cell of a symmetry
the phase portrait. One of them exits from the left point, th
passes above linep51, and enters to the right hyperbol
point. The other branch goes in the opposite direction un
line p51. The separatrix is described by the transcende
equation
e
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lnp2p115
m

K
~cosr21!, ~26!

which follows from Eq.~25!. We denote parameterE at the
separatrix as

E5E** , E** 5212
m

K
. ~27!

The phase plane (P,r) is subdivided by the separatrix into
three parts. Upper part I and lower part II represent ‘‘infini
motion’’ (E,E** ) of the test point, while the internal par
III envelopes all the curves of ‘‘finite motion’’ (E.E** ).
All integral curves within domain III pass through points
which pN51. So they describe the bubble trains with fre
i.e., unloaded, boundary lamellae. The integral curves of
main I illustrate a different physical situation—a contract
bubble train with blocking lamellarN2150, pN.1. Simi-
larly, extended bubble trains with fixed boundary lame
rN2150, pN,1 are represented by domain II. Each of th
singular points p51, r52pn creates four branches o
separatrix—the entering branches and the exiting ones.
respective solutions correspond to distinguishing configu
tions of the chain. Therefore, if some ‘‘realization of th
separatrix’’ will incorporate a single or a few singular point
then the respective texture of the train will be complex. If w
designate the current number of lamellae as time, then
finite motion in domain III can be treated as a motion with
finite time periodT. This means that the number of bubble
accumulated by a single cycle of revolution of an integ
curve is a finite value. When the solution approaches
separatrix, periodT tends to infinity; i.e., the solution de
scribes an unconfined bubble train. The solution also dem
strates the effect of the ‘‘irreversibility’’ of the bubble train
displacement. Namely, after the action of critical pressu

FIG. 5. Phase portrait of the system~23! and ~24!. The separa-
trix is denoted asS. Arrows show the direction of the increasin
arclengths.
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6936 56DAUTOV, KORNEV, AND MOURZENKO
drop has ended, part of the lamellae never occupy for
positions. The solution looks like the solitary ‘‘domain wall
@16,18,26#:

r54 tan21 exp@2~x2x0!#1OSAm

K D , x5Am

K
s.

~28!

That is, under the given pressure drop, all the lamellae
hind of the ‘‘wall’’ at left infinity s→2` shift to the period
r52p and reside there after unloading. Lamellae at rig
infinity s→`, ahead of the wall, keep the undeformed st
r50. The domain wall matches the second zone~the undis-
turbed zone! where the lamellae are pinned at the equil
rium state with the first zone, where lamellae are displa
over the period of channel. The wall size can be estimate
an order of magnitude asO(lAK/Am) @26#.

The domainlike structure resembles configuration III
Fig. 2. But the similarity is not complete because the eff
of the ensemble of the lamellae plays a crucial role in fo
patterning within the framework of the continuous mod
The collective interactions of lamellae guarantee the stab
of domainlike structures in the whole range ofKm, where
the continuous model is valid. This behavior absolutely d
fers from that of two bubbles@recall that inequality~22! se-
lects the range ofKm at which configuration III exists#.

The passage to the continuum limit enables us to be
suaded that the pressure variation is finite for all solutions
are interested in~domain III!. The upper boundary for the
admissible pressure drop is expressed by the maximum
the separatrix. By analyzing Eq.~26!, we find that the maxi-
mum pressure at the separatrix is prescribed asr5p. Insert-
ing this value into Eq.~26!, we arrive at the following equa
tion:

ln~11G!2G1
2m

K
50. ~29!

Equation~29! expresses the magnitude of the critical pre
sure dropG as a maximum point of the separatrix.

The general conclusion of this study is that the bub
train is unable to sustain the pressure drop overcoming
thresholdG, provided that one of the train ends is free.

Analysis of the cyclic solutions from domain III show
that any integral curve gives rise to an infinite number
solutions of the system of Eqs.~23! and ~24! ~provided that
the number of lamellaeN in the train is successively in
creased, but the external pressure drop remains unchang
Pext<11G level!. This means that, for any givenN, there
are several solutions to Eqs.~23! and~24! with the samePext
~Fig. 6!. Each of the solutions is characterized by the dist
guishing input parametersrN21 and E. Since we are inter-
ested in the start-up pressure drop, only the adiabatic s
tion @curve I in Fig. 6~b!# seems to be suitable.

V. DISCRETE MODEL

The continuous model, Eqs.~23! and~24!, is valid when-
ever lamellae displacements and pressure vary slightly o
the train. This assumption is valid for trains with smallm and
moderate lattice parametersK; or, more precisely, until the
er
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collective effects prevail over the individual feature of ea
bubble ~see Introduction and Sec. III E!. The intermediate
regime is important for applications and, what is more int
esting, one expects that the analysis of the discrete m
~13!–~15! will be able to select quantitatively the differen
regimes of the foam behavior and predict novel solutions.
mentioned above, the well-known Ulam model@24,25# con-
tains some characteristic features of the model under con
eration. The main result lies in the fact that the Ulam m
has stochastic solutions that lie within stochastic doma
separated by domains of regular solutions@25#. All the tra-
jectories, starting from the vicinity of hyperbolic pointr
50, p51, belong to stochastic layer IV in Fig. 7. The st
chastic layer is separated by regular trajectories from
upper and lower regions of regularity. Near the elliptic s
gular pointr5p, p51, there is a ‘‘stability island’’ sepa-
rated from the stochastic layer by a cyclic regular trajecto
The island is termed stable due to its mechanical sense,
an island in which the test point moves regularly.

In our case, this island in the phase portrait carries ano

FIG. 6. Multivariancy in choosing the appropriate solution
Eqs.~23! and~24!. ~a! The scheme of the path in phase portrait,~b!
the typical shape of corresponding solution. Parameters is counted
from arbitrary starting points to demonstrate the characteristic
ture of the dependences prescribed to the distinguishing branc
Curve II makes a single full revolution, starting from the bold d
and entering pointB.
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56 6937FOAM PATTERNING IN POROUS MEDIA
meaning. Any solutions from the vicinity of elliptic singula
points describe such a distribution of lamellae whose bub
are slightly stretched or contracted. But all the lamellae
main at the widest part of the pore. Surface energy of lam
lae for these solutions is enhanced with respect to the gro
state. Therefore, the lamellae most likely jump through th
‘‘dangerous’’ points. One expects that the equilibrium st
of the train, which is established with time in a dynamic wa
cannot include such ‘‘dangerous’’ pieces. In other wor
any trajectory that starts within the stochastic layer does
penetrate the island. Such an island exists until the capil
pressure and bubble compressibility exceed a certain cri
value expressed by inequality@24,25#

mK.
1

p2 . ~30!

Inequality ~30! resembles inequality~22! and ensures the
possibility of the appearance of configurations like config
ration III in Fig. 2. As soon as the input parameters get i
a range satisfying the inequality~30!, the elliptic singular
point becomes unstable and the island disappears. S
bubble trains with a single free end may contain the doma
where lamellae reside close to the widest part of the p
The pressure within such bubbles remains on the order o
initial undisturbed level. Despite the evident instability
local parts of the train, the caravan as a whole might be q
stable. This happens due to the high bubble compressib
or strong capillary pinning: the individual fate of the bubbl
comes to the forefront while the collective events lose ac
ality in the sense mentioned in Sec. II E, Eq.~19!.

Figure 8 shows the typical curvePext(rN21) for long
trains. HereN5101. The plot reveals the quasiperiodic d
pendency, Fig. 8~a!, which has already been discussed for t
continuous model~Sec. IV!. In the description of the stead
equilibrium state of the bubble train, we start with the p
(rN21,1), rN21→0 and use mapT. The expected result
based on the analysis of the continuous model~Sec. IV!, is
that the trajectory is unable to overcome the barrier~separa-
trix!. But the discrete picture is more complex. Name
when displacementrN21 becomes nearer to zero beyond
certain critical value, chaotic behavior replaces the regu
one, Fig. 8~b!. This means that the corresponding trajector
of solutions to Eqs.~13! and~14! pass through the stochast
layer IV on the phase plane~Fig. 7!. The randomization of
the lamella distribution speaks in favor of the glasslike p

FIG. 7. The sketch of stochastic layer IV of map~13! and~14! at
the separatrix ‘‘S. ’’
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terning of foam. However, with further decreasing the d
placement of last lamellarN21 , a regular part ofPext(rN21)
was found once more, Fig. 8~c!. This is associated with the
regime of the regularity of the map.

The energyF, as a function ofrN21 , is presented in Fig.

FIG. 8. The external pressurePext in different resolutions of
rN21 , m50.008,K51, N5101.
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6938 56DAUTOV, KORNEV, AND MOURZENKO
9. From this figure, we see that the solutions for trains w
N5101 and minimaF correspond to small displacements
the last lamella,rN21 . On the other hand, the randomizatio
of the bubble train is observed@Fig. 9~b!# within the same
range of the displacements of the last lamella as that in
8~b!. When the last lamella closely tends to the thro
rN21→0, a regular part of the energyF(rN21) is displayed,
Fig. 9~c!. The characteristic feature of foam behavior with
different ordering is demonstrated by Figs. 10 and 11.

A detailed analysis of pressure and energy dependen
shows that there are several intervals of the displacemen
the last lamella within which the energies of the chain va
slightly between the different states. It is very difficult
distinguish such increments numerically. Figure 11 sho
the phase portrait, pressure, and displacement distribut
for the three states marked in Fig. 10~a!. PointsA, B, andC
have the samePext. The two solutionsA andB, prescribed
as increasing and decreasing branches of the curve in
10~a!, trace almost the same trajectories and accumulate
similar domains of the compressed and extended bubb
Fig. 11~a!. The trajectoryC describes another solution an
contains a train structure different from that ofA andB, Fig.
11~b!.

The complexity of the foam texture can be revealed
analyzing the number of domains in the train. We use h
the term ‘‘domain’’ in order to distinguish the region withi
which the displacements of the lamellae are almost cons
Fig. 11~c!. In our numerical experiments, we found that t
states with more complex structure, containing several
mains of extended or compressed bubbles, may hav
smaller energy than those that have fewer domains. Th
contrary to the tendency that has been observed in the re
of the regular solutions of Eqs.~13! and ~14!, where the
greater the number of domain walls, the larger the energy@cf.
Figs. 8~a! and 9~a!#.

The variation of the number of domainsND in the bubble
chains is represented in Fig. 12. The numberND gradually
increases withrN21 , but relationND(rN21) is not regular.

The obtained results show that the solution to the prob
of the selection of the ground state in the case of long bub
train N→` is very complex. We observe the high sensibil
of the solutions of Eqs.~13! and ~14! with respect torN21
whenever the physical parameters vary within the domain
stochasticity. Within the family of input parameters und
consideration, states with the same boundary pressurePext
differ in energies only slightly and may be considered
equivalent.

One can take another criterion of the choice of the grou
state of a bubble chain under given pressurePext. This is the
‘‘adiabatic’’ criterion. We already discussed that criterion
Sec. III. It can be obtained by variation of the initial lame
positions under slow continuous variation of the press
Pext. This configuration has the smallestrN21 , among other
states with the samePext, and the simplest domain structur
ND51.

Within the framework of the ‘‘adiabatic’’ criterion, the
maximum pressure dropG is estimated by using the relatio
betweenPext andrN21 , near the first maximum. This is th
smallest estimate, because we expect the onset of motio
soon as the applied pressure drop overcomes this criteri
h
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Figure 13 demonstrates the first maximum press
Pext(rN21), which we observed in the rangerN21→0 for
variousm andK. One can see that, for a smallm andK, the
maximum admissible pressure is well predicted by the c
tinuous model, Eq.~29!. Whenm or K increase, the predic
tion of the continuous model underestimates the admiss
pressure. This can be explained by the fact that a solutio
Eqs.~13! and~14! follows an integral curve of Eqs.~23! and
~24! only approximately. Indeed, from the Eq.~13!, pN21 is
expressed as

pN215112pm sinrN21 . ~31!

By comparing Eq.~31! with Eq. ~26!, we obtain that
whenever condition~22! is satisfied, point~rN21 , pN21!,
rN21!1 rises above the separatrix, Eq.~26!, on the phase
plane. The difference between the integral curves for a
crete model and a continuous one increases with the gro
of m andK. The critical values ofm, defined by Eq.~22!, are
shown by arrows in Fig. 13 for each curve. It can be se
that Eq.~22! may be considered as a limit for the validity o
the predictions of the continuous model.

When mK approaches 1/p2, the discreteness of the sys
tem of Eqs.~13! and~14! becomes substantial. Its solution
with a smallrN21 , become sensitive to the variation of th
initial data. And various chaotic phenomena can be
served. The trajectories of the stochastic solutions belon
a stochastic layer and go in the vicinity of the separatrix
the continuous system of Eqs.~23! and ~24!. The chaotic
features of these solutions may be attributed to two m
effects. First, the variations of initial datarN21 are able to
abruptly alter the branch of the separatrix along which t
jectories are passing. Second, the distribution of points al
the trajectory is also sensitive to the initial data: while t
domains might occupy various regions, the associated en
remains at almost the same level. Figure 14 demonstrate
inherent structure of the phase portrait, associated with
glasslike patterning of foam. The main conclusion is that
admissible external pressure rises as the bubble train acq
the glasslike structure.

VI. EFFECT OF THE TRAIN LENGTH

The analysis of the steady states of bubble chains
shown that the applied pressure drop penetrates the bu
train for a finite distance, but not over the whole train. Mor
over, this distance, which is measured here byNcor, de-
creases with increasingm andK. Perhaps the nonuniquene
of the solution to problems~13!–~15! may be attributed to
the finiteness of the correlation length of the system. Inde
if we have no correlations between bubbles, then the vari
states under the same pressure drop, but with different
main structure, may be considered as equivalent comp
tions of the independent bubble blocks. This agrees with
behavior of bubble chains at a largemK, when chaotic struc-
tures of bubble chains indicate the weak correlation betw
neighboring bubbles. There is another reason for the app
ance of randomization in the train. IfN exceeds the correla
tion lengthNcor, then various parts of the train become ‘‘in
dependent.’’ The local structure of the train can va
irregularly with rN21 , i.e., the free tail of the train does no
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FIG. 9. The energyF associated with the states in Fig.
Dashed lines represent the respective dependence based on th
tinuous model.
‘‘feel’’ the events at the loaded end. The mathematical orig
of this fact consists in the presence of a thin stochastic la
at the vicinity of the separatrix, even for a smallKm @24#. If
the trajectory starts from the vicinity of hyperbolic poin
rN21→0, then such a trajectory will pass through the s
chastic layer by clinging to the separatrix.

It would be useful to estimate the number of the bubb
over which the load is distributed entirely. We apply th
continuous model for such an estimate, because in most
plications parameterm is very small. By integrating Eqs.~23!
and ~24!, we arrive at the solution@18#

L52pKN5E
1

Pext
dpS Pm* 2 lnPm* 212 ln

p

Pm
2Pm1pD 21/2

3S ln
p

Pm
2Pm2pD 21/2

, ~32!

wherePm* 5Pm* (m,K) is the maximum pressure prescribed
the separatrix,Pm is the maximum pressure for a given tr

con-

FIG. 10. ~a! The external pressure and~b! the associated energ
for the states from stochastic layer,m50.008,K51, N5101.
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FIG. 11. ~a! The phase portrait,~b! the pressure distribution ove
the train, and~c! the lamella displacement for statesA(s), B
(1), andC(n) corresponding to Fig. 10~a!.
jectory that is attributed to point (r5p), and Pext is the
applied pressure associated with the desired length of
bubble train~Fig. 15!. Analysis of the integral shows that th
number of lamellae in the train rises asPext tends toPm , and
the respective trajectory goes in the vicinity of the separat
Contrarily, if L→0, the applied pressure is expected to
smaller thanPm . In most applications, parameterm/K is
small. Hence,Pm* ;1, and we can use the asymptotic expa
sion with respect toPext21. In the new variablesx5p21,

FIG. 12. The number of domains,ND , as a function of the
displacement of the last lamella for the states prescribed toPext

51.1 andm50.008,K51, N5101.

FIG. 13. The maximum pressurePext as it might be expected fo
‘‘adiabatic’’ loading, N5101. Dashed lines represent theoretic
dependence~29!. The arrows point out the critical parameters d
fined by Eq.~22!.
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56 6941FOAM PATTERNING IN POROUS MEDIA
xext5Pext21, xm5Pm21, andxm* 5Pm* 21, we rewrite Eq.
~32! with quadratic accuracy as

Lxm*

2
'E

0

e du

A~k22u2!~12k21u2!
, ~33!

wherek5xm /xm* and e5xext/xm* . Integral ~33! can be ex-
pressed through the Jacobi elliptic functions so that we fi
the external pressure drop as a function of arclength, nam

FIG. 14. The typical phase portrait for discrete map~13! and
~14!, m50.016,K510, N52000 and six starting points. A dashed
line represents the separatrix of the continuous model, Eq.~26!.

FIG. 15. Pm* 5Pm* (m,K) is the maximum pressure prescribed t
the separatrix,Pm is the maximum pressure for a given trajectory
andPext is the applied pressure associated with given length of t
bubble train.
d
ly,

xext5xm*
kA12k2 sn~Lxm* /2,k!

A12k2sn~Lxm* /2,k!
. ~34!

The extremalization of Eq.~34! gives us parameterk5km .
Then we can find the desired dependencexext(L,xm* ). It is
very difficult to study this dependence analytically, but qua
tative estimates can be reached.

First of all, as Lxm* /2 tends to infinity, parameterxext

reachesxm , i.e.,k5e so that the right-hand side of Eq.~34!
tends to a constant that does not depend uponLxm* /2. This
saturation effect demonstrates the formation of a dom
wall within an infinitely long chain, like that expressed b
Eq. ~28! @26#. A simple estimate for the critical pressure dro
can be found by taking the limitm/K→0 in Eq. ~29!. In the
dimensional form, this start-up yield pressure dropḠ is writ-
ten as

Ḡ54APgsd/r 0lK. ~35!

Contrarily, if Lxm* /2 is small, then the elliptic function
may be represented analytically@32#, and the extremalization
of Eq. ~33! results in rootk51/&. Therefore, in this limit

xext5xm*
Lxm*

4
. ~36!

Taking into account that for smallm the asymptotic expres
sion xm* ;Am/K holds @26#, from Eq. ~36! we obtain

xext;Npm/2K, ~37!

and in the dimensional form Eq.~37! is written as

Ḡ5
2psd

Kr 0l
N. ~38!

The linearity of functionḠ(N) displays the independenc
of contributions of each lamella into the total pressure dr
This behavior might be expected for two limiting cases
the gas state in foam. If the gas in the bubbles were ab
lutely compressible, then the start-up yield pressure dro
completely determined by the overall Laplacian barrier.
the opposite limit, i.e., for an absolutely incompressible g
one expects the similar linear behavior of the critical pr
sure drop.

Thus, the two limiting regimes expressed by Eqs.~35! and
~38! facilitate the treating of experimental data and demo
strate the importance of the scales under consideration. S
we use the short models, the critical pressure drop will
pend upon the length of the sample, regardless of the fo
texture. At the same time, one expects that field pilot exp
ments will demonstrate the universal character of the crit
pressure drop versus input physical parameters. In Fig.
the experimental data reported by Falls, Musters, and R
lowski @7# ~their Table 2! are fitted into formula~38! ~G
;r b

23, r b is the effective radius of a bubble!, where the
number of lamellae per unit length is inversely proportion
to the volume of gas per bubble@3#. In the same picture, the
expected result for a long train is presented as line 1, Eq.~35!
(G;r b

23/2). Since the number of lamellae in the caravan w
e
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approximately eight, formula~38! is suitable and describe
the experiment well. The correlation length covers t
bubble train as a whole here.

VII. CONCLUSIONS

The obtained results show that the character of the di
bution of pressurespi and displacementsr i for a bubble
chain in a steady state depends upon the productmK, i.e.,
upon the measure of pinning energy with respect to the b
ing energy per unit link. FormK smaller than a critical value
as defined by Eq.~30!, various characteristics of the cha
are well predicted by the continuous model. The press
Pext, which a bubble chain withstands in a steady state, c
not exceedPmax, the maximum pressure attributed to a giv
m andK. For anyPext<Pmax, a unique distribution ofpi and
r i forms in the chain with a givenN.

WhenmK varies near its critical value, Eq.~30!, the sys-
tem ~13! and~14! has several solutions with a givenPext and
with a small energy difference. A specific class of solutio
can be found by applying the so-called principle of adiaba
transition. Namely, by imposing a crystalline structure to
initial unperturbed state of a chain, the simplest dom
structure can be obtained by slowly increasing the app
pressurePext. However, for a largemK @see Eq.~30!#, the
principle of adiabatic transition from the initial uncharge
state to that under pressurePext breaks, because there a
such steady states that cannot be obtained by simply incr
ing Pext.

Anyway, for each givenm, K, andN, the bubble train is
able to withstand only a load bounded from above. Su
maximum pressurePext is specified for each given set o
input parameters. At larger pressures, one expects tha
system begins motion, and a dynamic model is neede
describe such behavior. The dynamic effects might be

FIG. 16. Log-log plot of the critical pressure drop as a functi
of the effective bubble radiusr b . Experimental points@7# ~s! are
fitted into Eq.~35!, line 1, and Eq.~38!, line 2, by making use of the
three last pointsr b→0.4.
e

i-
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re
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nificant, even for smaller applied pressures, if the syst
resides in a metastable state.

The history of loading is very important for foam patter
ing. In particular, as it follows from the numerical exper
ments, the adiabatic transition from crystallinelike order
glasslike ordering cannot happen monotonically. At the sa
time, since the glasslike ordering improves the effect of fo
screening, it would be highly desirable to clarify the regim
of loading that result in the coarse-grained foam superst
ture. This superstructure might be imagined as a random
tem of blocks with internal crystallinelike order, separated
domain walls. In other words, the domain walls serve
apparent lamellae, and the blocks play the role of g
bubbles. To reinitiate flow, the ‘‘yield’’ pressure drop has
overcome the initial start-up critical pressure drop. It w
typically 10%–20% larger than that required to keep t
lamellae moving@33#. This fact qualitatively agrees with th
theoretical predictions discussed above.

In recent years, much attention has been paid to the
namic behavior of systems possessing many metast
states @34,35#. As a rule, various modifications of th
cellular-automaton model have been used for numeric
simulating such systems@34,36#. One expects that the dy
namics of the bubble trains moving through the network
active channels will demonstrate the characteristic featu
of self-organized criticality. The expectations are support
in particular, by recent analysis of mathematically simi
problems@37,38#.
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APPENDIX: CALCULATION OF BUBBLE VOLUME

Consider the variation of bubble volumeDVi caused by
displacement of thei th lamella. This variation may be sub
divided into two parts@we follow notations in Fig. 1~b!#. The
first is the volumeDVi8 bounded by capillary walls betwee
two cross sections at pointx5l/2 and at pointx5ai . The
second volumeDVi9 is bounded by a chord at pointx5ai

and the spherical midsurface of the lamella. These two v
umes can be expressed as

DVi85pE
l/2

ai S r 01d cos
2px

l D 2

dx, DVi95pE
ai

xm
h2~x!dx,

~A1!

where the functionh(x) can be written as

h5R sinw, R2R cosw5xm2x, 0<w<a. ~A2!

Here R is the radius of lamella, andxm is the intersection
point of the membrane and axisx.

Simple algebra gives us the resulting variation of bub
volume in the following form:
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DVi5DVi81DVi95pS ai2
l

2D S r 0
21

d2

2 D
1ldr 0 sin

2pai

l S 11
d

4r 0
cos

2pai

l D
1

p~xm2ai !
2

3
~3R2xm1ai !. ~A3!

Substitutingw5a into Eq. ~A2!, we find

R5
r 01d cos2pai /l

sina
, xm5ai1R~12cosa!, ~A4!
n

a-
where the anglea can be obtained by using the assumpti
~5!:

tana5
dr

dxU
x5ai

52
2pd

l
sin

2pai

l
. ~A5!

Thus, the volumeDVi can be expressed in terms ofai .
Making use of assumption~2! (d/l!1), we obtain

a'sina'tana'2
2pd

l
sin

2pai

l
, cosa'1. ~A6!

Substituting Eqs.~A4!–~A6! into ~A3!, we find
DVi5pS ai2
l

2D S r 0
21

d2

2 D1Fldr 0S 11
d

4r 0
cos

2pai

l D2
p2r 0

3d

2l S 11
3d

r 0
cos

2pai

l D Gsin
2pai

l
. ~A7!

It is convenient to rewrite Eq.~A7! in the form of an expansion with respect to the small parametersd/r 0!1 andr 0 /l
!1. Substituting argumentai2l/2 into sinus in the right-hand side of Eq.~A7!, instead ofai , we find

DVi5pS ai2
l

2D r 0
2H 12

2d

r 0

sin@2p~ai2l/2!/l#

@2p~ai2l/2!/l# J
1pS ai2

l

2D r 0
2H d2

2r 0
22

sin@2p~ai2l/2!/l#

@2p~ai2l/2!/l# F d2

2r 0
2 cos

2pai

l
2

p2r 0d

l2 S 11
3d

r 0
cos

2pai

l D G J . ~A8!

For our goals, we need only the principal term of this expansion. It has the form

DVi5pr 0
2S ai2

l

2D . ~A9!

Then the volume of the bubble as a whole becomes

Vi5pr 0
2~ai2ai 21!. ~A10!
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